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Abstract. We have demonstrated and modeled a simple and efficient method to transfer atoms from a
first Magneto-Optical Trap (MOT) to a second one. Two independent setups, with cesium and rubidium
atoms respectively, have shown that a high power and slightly diverging laser beam optimizes the transfer
between the two traps when its frequency is red-detuned from the atomic transition. This pushing laser
extracts a continuous beam of slow and cold atoms out of the first MOT and also provides a guiding to
the second one through the dipolar force. In order to optimize the transfer efficiency, the dependence of
the atomic flux on the pushing laser parameters (power, detuning, divergence and waist) is investigated.
The atomic flux is found to be proportional to the first MOT loading rate. Experimentally, the transfer
efficiency reaches 70%, corresponding to a transfer rate up to 2.7 × 108 atoms/s with a final velocity of
5.5 m/s. We present a simple analysis of the atomic motion inside the pushing–guiding laser, in good
agreement with the experimental data.

PACS. 07.77.Gx Atomic and molecular beam sources and detectors – 32.80.Lg Mechanical effects of light
on atoms, molecules, and ions – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

The realization of degenerate quantum gases requires the
production of an initial dense and cold trapped atomic
sample. The lifetime of the trapped atoms must be
long enough to allow for appropriate evaporative cooling
ramps, lasting up to several tens of seconds. A standard
vapour Magneto-Optical Trap (MOT) setup cannot al-
ways satisfy this last condition because of the relatively
high background pressure of the atomic vapour in the cell.
The use of a dispenser [1] or of a desorption source [2,3]
to load the MOT does not usually provide a trap lifetime
longer than a few seconds. To obtain the required life-
time, the MOT has to be placed in an ultra-high vacuum
chamber and loaded from a cold atom source, in general a
slow and cold atomic beam. One of the demonstrated and
widely used methods to create a cold atomic beam is the
Zeeman slower technique. However, this solution requires
an important technical development of different experi-
mental techniques than the one implied in a MOT setup.
In this paper, we will then concentrate on the transfer
of atoms from a first cold source to a trap situated in a
second high vacuum chamber.
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There are several ways to transfer atoms from a cold
atomic source to the high vacuum chamber. Mechani-
cal devices [4] or magnetic guides [5] are used to imple-
ment an efficient transfer of atoms initially in a MOT di-
rectly to either magnetic, electrostatic or atom chip traps.
Other techniques, based on quasi-resonant light forces, al-
low a faster transfer to a recapture MOT. Beam veloc-
ities low enough to allow the capture in a MOT in an
ultra-high vacuum chamber can be obtained by the pyra-
midal MOT [6,7], the conical mirror funnel [8] or the two-
dimensional MOT [9–12]. Even simpler devices exist such
as the low velocity intense atomic source (LVIS) [13–15].
Very high flux, up to 3×1012 atoms/s, have been reported
with a transversely cooled candlestick Zeeman slower type
of setup [16]. However, the counterpart of this large flux
is a higher atomic velocity, 116 m/s in this last experi-
ment, which is by far too high to load a second MOT. A
pulsed multiple loading, starting from a three-dimensional
MOT, has been performed in reference [17]. The atoms are
pushed by a near resonant laser beam resulting in a high
number of atoms 1.5 × 1010 in second MOT, loading rate
2 × 108 atoms/s and allow lower velocity 16 m/s. How-
ever, the transfer is based on using an hexapole magnetic
field, produced by a current above 60 A, which compli-
cates the experiment. Simpler devices, without magnetic
guiding, have achieved similar result by using continuous
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transfer [18–20]. In these experiments, a thin extraction
column is created in the centre of a MOT and, due to a
radiation pressure imbalance, a continuous beam of cold
atoms is produced. It is possible to couple these simple de-
vices with a distinct dipolar atomic guide [21]. We propose
here to use the same laser beam for pushing and guiding
the atoms, resulting in an even simpler setup.

This paper reports on a double MOT setup combining
the ability of a pushing laser to extract the atoms from
a first trap (MOT1) and to guide them to a second trap
(MOT2). The idea is to merge the leaking MOT tech-
nique [13,18,19] with the red-detuned far off–resonance
optical dipole guide technique [22–24]. Two experiments
have been simultaneously performed in two different labo-
ratories, with different atoms: 133Cs at Laboratoire Aimé
Cotton and 87Rb at Laboratoire de physique des lasers.
Our setups are as simple as the one used in the leak-
ing MOT techniques, but provide a higher flux and a
lower atomic beam velocity. We can achieve a transfer effi-
ciency up to 70% with a mean atomic velocity 4 to 12 m/s
depending on the pushing beam parameters. Our setups
are very robust against misalignments of the pushing and
guiding laser beam, and small variations of its detuning
or power. The only requirement is a sufficiently high laser
power (tens of mW) to produce a significant dipolar force
to guide the atoms during their flight.

This paper is organized as follows: in Section 2 we give
details on the experimental realization of the beam and
discuss the role of MOT1 parameters. In Section 3 we
describe theoretically the pushing and guiding processes
during the atom transfer. Section 4 discusses the experi-
mental parameter dependences of the setup as compared
with the theory. Finally we present a comparison with
other available techniques.

2 Experimental realization

2.1 Experimental setup

The vacuum system is similar in both experiments, ex-
cept for a slight difference in the design of the differential
vacuum tubes and the MOT2 cells.

For the cesium (resp. rubidium) experiment the setup
consists of two cells vertically separated (see Fig. 1). The
distance between the two traps is D = 57 cm (resp. D =
72 cm). A reservoir connected to the upper source cell sup-
plies the atomic vapour. The recapture chamber is a glass
cell with 1×1×10 cm3 (resp. 1.25×7.5×12 cm3) volume.
A differential pumping tube located 3 cm (resp. 10 cm)
below MOT1 provides a vacuum within the 10−11 mbar
range in the bottom MOT2 cell while in the MOT1 cell
it is in the 10−8−10−9 mbar range. For the cesium exper-
iment, the tube is 18 cm long and has a conical shape
(3 mm diameter at its top and 6 mm at its bottom part)
whereas it is cylindrical, 12 cm long and 6 mm diameter
in the rubidium experiment.

In both cases, MOT1 runs in a standard magneto-
optical trap configuration with a magnetic field gradi-
ent around 15G/cm along the horizontal axis of the

Fig. 1. Scheme of the experimental setups. The parameters
used in the discussion (f , D, z0, w0) are labeled on the picture.
The vertical z-axis is oriented downwards.

MOT1 coils. All the laser beams have a 2.5 cm diame-
ter (clipped by the mounts of the quarter-wave plates)
and are provided by laser diodes. In the rubidium experi-
ment, the laser is divided into 3 retroreflected beams car-
rying 10 mW laser power. They are 10 MHz red-detuned
from the 87Rb 5s(F = 2) → 5p3/2(F ′ = 3) transition.
In the cesium experiment, two 5 mW radial beams are
retroreflected and make an angle ±45◦ with the vertical
axis. Each of the two (non reflected) axial beams carries
10mW laser power. They are 15 MHz red-detuned from
the Cs 6s(F = 4) → 6p3/2(F ′ = 5) transition. The 5 mW
repumping light, with a frequency on resonance respec-
tively with the Cs transition 6s(F = 3) → 6p3/2(F ′ = 4)
and the 87Rb transition 5s(F = 1) → 5p3/2 (F ′ = 2), is
mixed with all the trapping beams. In MOT2, the trap-
ping beams are limited to about 2R = 8 mm in diameter
in both experiments due to the cell dimensions and in or-
der to reduce the scattered light.

In addition to these trapping lasers, the linearly polar-
ized pushing–guiding beam, red-detuned from the MOT
(F −→ F + 1) transition (F = 4 for Cs, F = 2 for
87Rb) with maximum power of P0 = 63 mW for Cs (resp.
P0 = 21 mW for Rb), is aligned vertically into the trap.
The parameters used in both experiments are summarized
in Table 1. In contrast with the similar setups reported
in [18,19], the pushing lasers are not frequency-locked in
our experiments. The detuning is chosen to optimize the
transfer efficiency and is found to be such that the num-
ber of atoms in MOT1 is roughly reduced by a factor ten
when the “pushing–guiding beam” is present. The beam
is focused at position z0 = −34 cm (resp. z0 = −13 cm)
before MOT1 by a lens f = 2 m (resp. f = 1 m).
It is not perfectly Gaussian, however the waist at po-
sition z is still given by w(z) = w0

√
1 + (z − z0)2/z2

R,
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Table 1. Pushing beam parameters used in cesium and ru-
bidium experiments (see text and Fig. 1). All distances are
given in mm, the laser power P is in mW. w0, w1 and w2 are
the pushing beam radius at 1/e2 at focus, MOT1 and MOT2
positions, respectively.

exp. D f |z0| w0 w1 w2 zR P
Cs 570 2000 340 0.2 0.65 1.7 110 < 63
Rb 720 1000 130 0.3 0.33 1.0 260 < 21

where w0 = 200 µm (resp. 300 µm) is the measured min-
imum waist and zR = 110 mm is the estimated Rayleigh
length (resp. zR = 260 mm, measured value for Rb). It
diverges to a 1/e2-radius of w1 = 0.65mm (resp. 0.33 mm)
in MOT1 and about 1.7mm (resp. 1.0 mm) in MOT2. The
larger size of the beam at the position of MOT2 limits the
perturbation of the trapping and cooling mechanisms.

2.2 Flux from MOT1

Experimentally, the main features of the atomic beam are
deduced from the loading characteristics of MOT1 and
MOT2, where the number of atoms is determined using
a calibrated photodiode monitoring the scattered MOT
light. The main goal is to have the highest possible recap-
ture rate of atoms in the MOT2 region. This ingoing flux
is obviously related to the characteristics of MOT1.

The extraction process can be summarized as fol-
lows [18,19]. In MOT1 hot atoms are first decelerated by
the MOT radiation pressure, then slowly moved to the
centre of the trap where they are extracted by the push-
ing laser. In addition to its pushing effect, the laser beam
shifts the atomic levels by a few natural linewidths so that
a transverse cooling of the atomic beam takes place dur-
ing extraction, limiting the initial atomic temperature to
about 25 µK for Cs (40 µK for Rb). Moreover, the trap-
ping forces are reduced and the pushing beam becomes
dominant. Hence, atoms are extracted from the trap and
accelerated in the direction of MOT2. After the transfer
to the second chamber, the atoms are finally recaptured
in MOT2 by radiation pressure.

In a first set of experiments, we study the flux of atoms
extracted from the upper chamber. This outgoing flux de-
pends on the number of captured atoms in MOT1, which is
related to the background pressure of the alkali vapour. As
there is no direct access to the background pressure value,
we have measured the loading time of MOT1, which, in
a large regime of operating parameters, is inversely pro-
portional to the atomic pressure in the source cell. The
number of atoms in a MOT in the stationary regime is [25]

N =
L

γ + γp + βn
, (1)

where L represents the loading rate of the MOT, γ is the
loss rate due to background collisions, γp gives the loss
rate induced by the pushing laser, β is the rate of the cold
two-body collisions between the trapped atoms, and n is
the average atomic density in the MOT. The density in
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Fig. 2. (Color online) Dependence of the MOT2 parameters
on the MOT1 loading time τ in the Cs experiment. N1 is the
number of atoms in MOT1 without pushing beam, Lout is the
atomic flux, L2 the loading rate of MOT2 and N2 the number
of recaptured atoms in MOT2.

MOT1 is limited to about 1010 atoms/cm3, so that the
term βn is negligible in both setups.

Loading rates in both MOTs are given by the mea-
sured initial slope of the number of trapped atoms in the
MOT versus time. In MOT2, this measure is performed
after suddenly switching on the pushing laser and waiting
for the arrival of the first atoms. In MOT1, the loss rate γ
is inferred by measuring the 1/e-loading time τ (γ = 1/τ
in a wide range of vapour pressure [25]) or by dividing
the loading rate L1 by the number of atoms N1 measured
when the pushing beam is off. When the pushing laser is
switched on, the loss processes in MOT1 increase drasti-
cally. If Np

1 is the number of atoms in MOT1 in the pres-
ence of the pushing beam, then Lout = γpN

p
1 is the flux

of atoms leaking out of MOT1 through the optical guide.
We deduce it from parameters we already measured via
the formula:

Lout = L1 − γNp
1 . (2)

To get the data plotted in Figure 2, τ is tuned by vary-
ing the background pressure. Whatever the background
pressure, the number N1 of atoms is approximately con-
stant. At high background pressure (i.e. low values of τ),
the outgoing atomic flux Lout increases with the load-
ing time τ because the number of atoms without push-
ing beam N1 slightly does. Then at relatively low pres-
sure Lout decreases, following the behaviour of the MOT1
loading rate L1 (inversely proportional to τ). The loading
rate of MOT2 L2 and the number of atoms N2 in MOT2
are presented as a function of τ in Figure 2. Their depen-
dence with the MOT1 loading time is similar to that of
the atomic flux Lout. The overall efficiency of the transfer
process is defined by the incoming flux in MOT2 divided
by the outgoing flux from MOT1, that is L2/Lout.

We conclude that for higher MOT2 loading rate we
need a relatively high background pressure in MOT1 and
a large laser power in the trapping beams (to have higher
N1 value). For our experimental conditions the optimum
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is at a MOT1 loading time of about 1−2 s. The data
presented here were not taken with optimized pushing–
guiding beam parameters, the efficiency being here limited
to typically 10%. Once these parameters are well set we are
able to achieve maximum transfer efficiency of about 70%
for Cs (resp. 50% for 87Rb), without affecting the over-
all dependence of the different quantities on the MOT1
loading time.

3 Pushing and guiding processes

After leaving the MOT1 region, the atomic beam is no
longer affected by the MOT1 lasers and is guided due to
the attractive dipolar force created by the red-detuned
pushing–guiding beam. In this section, we describe the
guiding process using an analytical model similar to that
given in references [22,24]. The total force applied on the
atoms is the sum of a radiation pressure “pushing force”
F push and of a dipolar “guiding force” F = −∇U , where
U is the guiding potential. The gravitational force plays a
minor role in the loading process.

A two-level model function of the laser parameters
(power, detuning and waist) describes qualitatively the ex-
perimental dependence of the transfer efficiency between
the two MOTs. A more detailed quantitative analysis of
the processes is proposed in the rest of this section.

3.1 Two-level model

In this first simple model we neglect gravity, the ini-
tial velocity and temperature of the atoms and beam
divergence. We consider the atoms as a two-level sys-
tem with a transition energy �ω0, a natural linewidth Γ
(Γ/2π = 5.2 MHz for Cs, 5.9 MHz for Rb) and a sat-
uration intensity Is = 1

6�ck3 Γ
2π (1.1 mW/cm2 for Cs,

1.6 mW/cm2 for Rb). We use here z as the vertical co-
ordinate along the laser beam propagation with origin in
the centre of MOT1 and r for the radial cylindrical coordi-
nate (see Fig. 1). For this two-level model, the waist w of
the pushing–guiding laser is assumed to be constant and
equal to its experimental value at MOT1 position z = 0.
The laser beam has a power P0, a wave vector k = 2π/λ,
and an angular frequency ω detuned by δ = ω − ω0 with
respect to the atomic transition.

The on-axis light shift is given by U0 = �δ
2 ln(1 + s)

where s = (I/Is)/(1+4δ2/Γ 2) is the saturation parameter
and I = 2P0/(πw2) is the peak laser intensity. As the laser
is far detuned, saturation is always very low and one can
simply replace ln(1 + s) by s in this expression. In this
limit, the guiding potential is

U0 e−
2r2

w2 . (3)

As the waist is considered constant, the guide does not af-
fect the longitudinal motion. On the contrary, it is crucial
for confining the transverse motion.

The atoms absorb and emit spontaneously photons at
a rate

Γ ′ =
Γ

2
s

1 + s
=

Γ

2
I/Is

1 + 4 δ2

Γ 2 + I/Is

, (4)

which gives a pushing force

Fpush = Γ ′
�k = Γ ′Mvrec, (5)

where vrec = �k/M is the recoil velocity and M the atomic
mass. The velocity increases due to photon absorption,
and the number of scattered photons to reach the po-
sition z is approximately v(z)/vrec =

√
2Γ ′z/vrec. The

pushing process is also responsible for a heating due to
random spontaneous emission in all directions. The mean
horizontal kinetic plus potential energy per atom 2kBT in
the 2D confining potential is increased by two third of the
recoil energy Erec = Mv2

rec/2 = kBTrec/2 at each scatter-
ing event [24,26]. This gives rise to a horizontal kinetic
temperature

Th(z) =
v(z)
vrec

Trec

6
. (6)

To have an efficient pushing–guiding beam we require in
this simple two–level approach that the atoms remain
trapped in two dimensions inside the guide during the
whole transfer. This condition is

2kBTh(z) < |U0| for all z. (7)

As the horizontal velocity spread increases with z, this
is equivalent to 2kBTh(D) < |U0|. A second constraint
is that the beam velocity at the MOT2 position (vbeam)
should be lower than the capture velocity (vcapture) of the
MOT

vbeam < vcapture. (8)

The value of vcapture is on the order of the maximal veloc-
ity for an atom to be stopped on the MOT beam diameter
distance 2R, that is vcapture =

√
ΓRvrec [25]. As a result,

we evaluate vcapture to be about 21 m/s for cesium and
30 m/s for rubidium.

The efficiency of the pushing–guiding process is deter-
mined by how deep the conditions (7) and (8) are verified.
To describe qualitatively the guiding efficiency in relation
with these conditions, we propose to describe each con-
dition by a function f , equal to zero when the inequal-
ity is strongly violated and to 1 when it is fully verified,
with a continuous transition between these two extremes.
The guiding efficiency is then described by the product
f(2kBTh(D)

|U0| )× f( vbeam
vcapture

) of the two conditional functions.
The result is given for Cs in Figure 3 as function of the
laser detuning, with vcapture = 21 m/s and the function f
chosen arbitrarily to be f(x) = 1

1+x10 .
A comparison of the two-level model with experimen-

tal results (see Fig. 7, left) presents a good qualitative
agreement, reproducing the presence of an optimal red
detuning at given laser power. The maximum transfer
efficiency increases with the power of the pushing beam
while the position of the peak is shifted to larger absolute
values of the detuning. This simple model is sufficient to



E. Dimova et al.: Continuous transfer and laser guiding between two cold atom traps 303

-10 -8 -6 -4 -2 0

0.0

0.1

0.2

0.3

x1000

ef
fic

ie
nc

y,
 a

rb
itr

ar
y 

un
its

detuning δ, GHz

 46 mW
 10 mW

Fig. 3. Efficiency (see text) of the pushing–guiding pro-
cesses versus laser detuning δ for a 650 µm waist laser beam
with different laser power 10 mW (dashed line ×1000) and
46 mW (solid line). The other parameters are: initial temper-
ature T0 = 25 µK, Isat = 1.1 mW/cm2, Γ = 2π × 5.2 MHz,
vrec = 3.5 mm/s, Trec = 0.2 µK and the two MOT cells are
separated by 57 cm (the values used are those of the Cs exper-
iment).

derive the main conclusion: the transfer is more efficient
with a far red-detuned and intense laser beam. However,
the theory predicts a peak further from resonance than
observed experimentally. Moreover, the sensitivity to the
laser power is much more pronounced than observed in
the experiment. This motivates a more detailed analysis
of the processes operating during the travel of the atoms
from MOT1 to MOT2. In particular, the effect of optical
pumping to the lower hyperfine state has to be considered.

3.2 Optical pumping

The absorbed photons can lead to optical pumping be-
tween the two hyperfine levels of the ground state which
have different laser detuning with respect to the pushing
laser. Indeed, very quickly after leaving the MOT1 region,
the atoms are pumped essentially in the lower ground state
F = 3 for cesium (resp. F = 1 for rubidium) as there is
no repumping laser light superimposed with the pushing
laser beam. This optical pumping is essential for a good
transfer efficiency, as it greatly reduces the final velocity
of the atomic beam (see Sects. 3.6 and 4.2). However, a
small population in the other ground state is still present,
typically 1 to 3 percent for a linearly polarized beam, as we
shall see [27]. As the radiation pressure is much larger for
atoms in the upper ground state (about 100 times larger
for detuning values discussed here), even this small frac-
tion plays a role and both ground state populations have
to be taken into account for the estimation of the pushing
force. On the contrary, the dipolar force may be estimated
by assuming that the atoms are only in the lower ground
state, as this force is only about 10 times smaller than in
the upper ground state, which is 100 times less populated.

An estimate of the populations in the ground states
is obtained by assuming an equal detuning for the tran-

sitions from the upper hyperfine ground state to all the
hyperfine excited states. We define an “effective” detun-
ing δ̄ ≈ δ + ∆′

HFS/2, where ∆′
HFS is the total width of the

hyperfine structure in the excited state (∆′
HFS � 600 MHz

for Cs and ∆′
HFS � 500 MHz for 87Rb respectively). Us-

ing this mean detuning δ̄ we calculate the pumping rates
between the two hyperfine ground states. This is fairly
good for large detunings (above 1 GHz from the cycling
transition). To illustrate our results we will choose the
following typical values: δ/2π = −2 GHz from the (F =
4 → F ′ = 5) transition of the Cs (i.e. δ̄/2π = −1.70 GHz)
and δ/2π = −1 GHz (i.e. δ̄/2π = −750 MHz) from the
(F = 2 → F ′ = 3) transition of the 87Rb. We also define
∆HFS as the hyperfine structure interval in the ground
state (2π × 9.2 GHz for Cs, 2π × 6.8 GHz for 87Rb)
(see [28]).

The ratio of populations in the upper hyperfine ground
state NF+1 and in the lower one NF may then be esti-
mated as:

η =
NF+1

NF + NF+1
≈ NF+1

NF
= α

(
δ̄

δ̄ − ∆HFS

)2

with α =
2F + 3
2F + 1

=
{

9/7 for Cs(F = 3)
5/3 for 87Rb(F = 1) . (9)

The factor α is simply the ratio between the number of
substates in the F + 1 and F ground states, to which
NF+1/NF should be equal at a detuning large as compared
to the hyperfine structure ∆HFS; the term involving the
detuning is related to the ratio of excitation rates from
the two hyperfine ground states. The formula leads to η =
3.2% of the atoms in the Cs(6s, F = 4) state and η = 1.6%
in the Rb(5s, F = 2). This value is in excellent agreement
with a full calculation taking into account all the different
detunings with the hyperfine excited states.

3.3 Pushing force

Another factor should be considered: the laser mode
shape. Indeed, a relatively strong divergence is needed
in order to both efficiently push and guide atoms in the
MOT1 region and not affect the MOT2 operation. The
guiding beam waist varies with position, according to

w(z) = w0

√
1 + (z − z0)2/z2

R. (10)

The depth U0 is then modified along the atomic trajec-
tory due to the change in the laser intensity and, taking
into account the results of the previous section, the push-
ing force in the centre of the beam may be estimated as
follows:

Fpush(z) =
Γ

2
�ks̄(z)

(

(1 − η) + η

(
δ̄ − ∆HFS

δ̄

)2
)

� Γ

2
�ks̄(z)(1 + α), (11)
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where s̄(z) is the saturation parameter calculated for the
lower ground state, at detuning δ̄ − ∆HFS. We take into
account the linear polarization of the pushing beam by
multiplying s̄ by a factor 2/3 in all calculations. We neglect
however the small change in δ̄ due to the light shift, which
is even reduced when the waist w(z) becomes larger.

The mean pushing force is reduced due to the Gauss-
ian transverse profile of the pushing beam and the finite
size of the atomic cloud. This may be taken into account
approximately by dividing the force by a factor 2 [24].
Note that this underestimates the initial pushing force,
when the atoms are still well guided (rms radius less than
w(z)/2), and overestimates it when the cloud size becomes
larger than half the waist. As the mean pushing force now
depends only on z, it may be written as the derivative of
a “pushing potential” Upush:

Upush(z) =
Γ

2
�ks0zR(1 + α) arctan

z − z0

zR
(12)

where s0 = s̄(z0). The velocity at each point is then eas-
ily calculated by energy conservation (z-axis is oriented
downwards):

v(z) =
[
v2
0 + 2gz + Γvrecs0zR(1 + α)

×
(

arctan
z − z0

zR
+ arctan

z0

zR

)]1/2

, (13)

where v0 is the input velocity in the guide. The effect of
gravity is not dominant, but was taken into account by the
2gz term. v0 can be estimated as the output velocity of the
MOT1 region. We have calculated it using formula (13)
assuming that the atoms in the MOT1 region have a zero
initial velocity and are in the upper hyperfine ground state
due to the presence of the repumping light (η = 1). For
instance, using a travel distance z roughly equals to the
MOT1 region radius (10 mm) and a laser power of 21 mW,
we find that atoms enter the guide with a velocity v0 ≈
9 m/s for Rb; for the Cs parameters, we obtain in the
same way v0 ≈ 3.1 m/s. From equation (13), we also infer
the traveling time as ∆t =

∫ D

0 dz/v(z).

3.4 Guiding condition

As previously discussed, the light shift of the lower ground
state is dominant in our case. The atoms leaving MOT1
are thus guided by the on-axis light shift potential given by

U0(z) =
�(δ̄ − ∆HFS)

2
s̄(z). (14)

Equation (7) is still the strongest constraint for the choice
of the parameters and becomes more and more difficult
to fulfil as z increases, because |U0| is reduced due to
the beam divergence. The horizontal kinetic temperature
Th(z) is evolving due to two opposite effects: photon scat-
tering [29] is responsible for an increase of Th while adi-
abatic cooling tends to lower it as the waist increases.

The adiabaticity condition |dωp/dt| � ω2
p, where ωp is

the transverse oscillation frequency of the guide, is well
fulfilled in both experiments except when the atoms move
in the non harmonic part of the potential. This break-
down of the adiabaticity occurs only when the atoms
are close to leave the guide. This only marginally affects
the guiding condition and will not be taken into account
here. ωp varies with the inverse squared waist, and one
has ωp(z) = ωp(0)w2(0)/w2(z) = ωp(0) z2

0+z2
R

(z−z0)2+z2
R

. To ob-
tain an expression for Th(z), valid while the atoms remain
guided, we write the change in Th for a small change δz
in z. As the phase space density is conserved during this
adiabatic cooling, the cooling contribution is proportional
to the inverse squared waist. Spontaneous scattering is re-
sponsible for a supplementary heating term, proportional
to the number of photons scattered during δt = δz/v:

Th(z + δz) = Th(z)
w2(z)

w2(z + δz)
+

Γ

2
s̄(z)

Trec

6
δz

v(z)
. (15)

The temperature increase is Trec/6 for each spontaneous
scattering event. s̄(z) is proportional to 1/w(z)2, just like
the oscillation frequency. Using the dependence in w(z),
we obtain the following differential equation for Th:

dTh

dz
= −Th(z)

2
w(z)

dw

dz
+

Trec

6
w2(0)
w2(z)

Γ

2
s̄(0)

1
v(z)

. (16)

Using the expression of w(z), the solution of this equation
reads:

Th(z) =
z2
0 + z2

R

(z − z0)2 + z2
R

[
T0 +

Trec

6
Γ

2
s̄(0)

∫ z

0

dz′

v(z′)

]

(17)
where T0 is the initial temperature at the guide entrance.
The integral in the last term is the time necessary for
an atom to travel to position z. In the range of param-
eters explored in our experiments, the sum of these two
terms decreases with z, but slower than the trap depth.
As can be seen in Figure 4 (left), the mean horizontal en-
ergy 2kBTh becomes larger than the trap depth at some
position zout before reaching MOT2. However, as will be
discussed below, this partial guiding is sufficient for limit-
ing the size of the atom cloud to below the MOT2 beam
diameter.

3.5 Recaptured atoms

For a good transfer efficiency, two main criteria have to
be fulfilled. First, the atomic beam should stay roughly
collimated on a distance long enough to pass through the
differential tube, and then the transverse cloud radius at
the end should be comparable to the capture radius of
MOT2. This means that even if they leave the guide be-
fore reaching MOT2, the atoms can still be recaptured.
Second, the final longitudinal velocity of the atomic beam
must not exceed the capture velocity of MOT2. As the
atomic beam velocity is in any case lower than the capture
velocity of MOT2, the recapturing mechanism is mostly
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Fig. 4. (Color online) Evolution for the 87Rb experiment of different parameters with the traveling distance z between the two
MOTs, at different powers: 15 mW (dashed lines) and 21 mW (solid lines); the initial temperature at the guide entrance was
set to T0 = 40 µK. The point zout where the atoms leave the guide is marked by a vertical line. Left: mean horizontal energy
2kBTh (thin lines, Eq. (17)) and trap depth |U0| (bold lines, Eq. (14)). Right: rms radius of the guided atomic beam. The radius
of the MOT2 beams is marked by a horizontal line.

limited by the matching between the atomic beam size
and the size of the capturing region of MOT2.

The capture size of MOT2 is limited by the radius
R = 4 mm of the collimated trapping laser beams. Ac-
cording to the former considerations about heating of the
guided atoms (see Sect. 3.4), the mean horizontal energy
of the cloud is lower than the guiding trap depth over a
distance zout = 38 cm for a laser power of 63 mW and
an initial temperature T0 = 25 µK in the case of Cs
(resp. zout = 28.5 cm with T0 = 40 µK and a laser
power of 21 mW in the case Rb) (see Fig. 4). For sim-
plicity we consider hereafter that all the atoms remain
pushed and guided up to that point and then undergo
a free ballistic expansion as they keep falling. Includ-
ing this assumption in our model, we can evaluate the
size of the atomic cloud ∆rf as it reaches MOT2. While
the atoms remain trapped, the cloud size is of the order
of ω−1

p (z)
√

kBTh/m. The guiding step ends when kBTh

reaches |U0(z)|/2, such that the rms size at the guide out-
put is ∆rout = ω−1

p (z)
√|U0(z)|/2m = w(z)/

√
8, that is

∆rout = 470 µm for Cs (resp. ∆rout = 200 µm for Rb). We
assume a fixed temperature for the falling atoms, as the
adiabatic cooling is not efficient for a non trapped cloud
and the heating rate is also very low after zout. Th is about
10 µK for Cs and 25 µK Rb. After the remaining falling
time of 36 ms (resp. 36 ms for Rb) the atomic beam has
a typical standard deviation for the transverse Gaussian
atomic density distribution of ∆rf ≈ 1 mm for Cs and
∆rf ≈ 1.75 mm for Rb, smaller than MOT2 radius, mean-
ing that almost all the atoms are recaptured in MOT2 for
both experiments. Note that this model allows to predict
∆r(z) at any position z, as shown in Figure 4, right.

3.6 Transfer efficiency

We come back now to an estimation of the transfer effi-
ciency as discussed in Section 3.1 and presented in Fig-
ure 3. Within the frame of the refined model presented
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Fig. 5. (Color online) Efficiency (see text) of the pushing–
guiding processes versus laser detuning δ, calculated for 87Rb
for the parameter of the pushing beam given in text, with
different laser power 10 mW (thin solid line, black), 15 mW
(dashed line, red) and 21 mW (thick solid line, blue). The
maximal capture velocity in MOT2 has been fixed to vcapture =
30 m/s, the initial temperature to T0 = 40 µK and the MOT2
beam radius R to 4 mm. The corresponding experimental val-
ues are shown in Figure 7, right.

now, we are able to compute a transfer efficiency in the
same spirit. As we have seen in the previous section,
the guiding is not required until the end for the whole
cloud to be recaptured. We thus retained the two follow-
ing conditions: (i) the arrival velocity has to be smaller
than vcapture and (ii) the cloud size must be less than
the MOT2 beam waist. We then calculate the efficiency
f [∆r(D)/R] × f [v(D)/vcapture], with the function f pre-
viously used in Section 3.1, and plot it in Figure 5. The
model predicts a good efficiency in a detuning range be-
tween −0.5 GHz and −1.6 GHz, the width of the large ef-
ficiency region being reduced with a smaller laser power.
These predictions have to be compared with the rubid-
ium experimental data of Figure 7, right. The agreement
is qualitatively good, and reproduces the main features.
The two limits of the large efficiency region have different
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Fig. 6. (Color online) Dependence of the number of recaptured atoms N2 in MOT2 on the pushing beam power. Left: Cs data.
The experiment is done at four different frequencies (see the diagram in the centre). Right: 87Rb data, recorded at −1 GHz

detuning from the 5S1/2(F = 2) → 5P3/2(F
′
= 3) transition.

origins: on the large detuning side, the efficiency drops
due to an increase in the atomic cloud size, as the guiding
potential is weaker. On the lower detuning side, close to
resonance, the efficiency becomes limited by the final ve-
locity, which is larger than the capture velocity of MOT2.
On this side, theory fails to predict the less measured ef-
ficiency at lower laser power, as the mean detuning δ̄ ap-
proach (Sect. 3.2) is not valid any more. In particular, the
efficiency should drop to zero at the resonance with the
rubidium 5S1/2(F = 2) → 5P3/2(F

′
= 1) line, situated

at δ/2π = −424 MHz and marked with a vertical line in
Figure 5.

4 Experimental results

In this section, we present the experimental study of the
guiding process and compare it with the above theoreti-
cal model. The dependence of the recaptured atom num-
ber on the pushing beam parameters are first investigated.
We then measure the mean atomic velocity and the travel-
ing time. During the experimental investigation the atom
vapour pressure in MOT1 is kept constant.

4.1 Pushing beam parameters

The parameters of the pushing beam that we have exper-
imentally optimized are its divergence, waist, power and
detuning.

Divergence and waist

In order to optimize the atomic beam characteristics we
have first investigated the role of the laser beam waist,
related to the divergence of the pushing beam and to the
pushing force. It is clear that the pushing–guiding beam
should diverge, to have a significant effect on MOT1 with-
out disturbing MOT2. Moreover, this divergence provides

an horizontal adiabatic cooling of the guided atoms. We
have used three different lenses (f = 0.75 m ; 1 m ; 2 m)
to focus the pushing beam. For each lens the transfer effi-
ciency is studied as a function of the focus distance from
MOT1. The position of the lens is more critical than its
focal length. The optimum is obtained with a lens f = 2
m for the Cs experiment (resp. f = 1 m for 87Rb) and
distance from MOT1 34 cm (resp. ≈ 13 cm), where the
beam diameter on the MOT1 region is ≈ 1.3 mm (resp.
≈ 0.6 mm). The measured waist at the focal point is
200 µm (resp. 300 µm). It leads to a divergence w0/zR

of about 2 mrad (resp. 1 mrad).
In conclusion we found that the best transfer efficiency

occurs when the pushing beam, focused before MOT1, has
a diameter smaller than 1 mm in MOT1 and a divergence
such that the beam diameter at MOT2 position is less
than 3 mm. In this sense our results are similar to the one
found in references [18,19].

Power and detuning

The recaptured number of atoms into MOT2 at different
laser powers of the pushing beam and at different detun-
ings for the two elements Cs and 87Rb is shown resp. on
left and right of Figure 6.

It is first obvious that the best experimental conditions
are achieved with a laser frequency red-detuned with re-
spect to all atomic transitions (curve (a) in Fig. 6, left).
The transfer efficiency is larger for a red-detuned laser fre-
quency than for the other laser frequencies due to the fact
that after leaving the MOT1 area the atoms feel the push-
ing light also as a guide. For such detunings, the atomic
flux as well as the number of recaptured atoms N2 in
MOT2 increase when the power of the pushing light in-
creases, and saturates at large power when all the atoms
are efficiently guided to MOT2 (see also Fig. 6, right). At
a given detuning, an increase of the laser power leads to
a decrease of the transfer efficiency, due to an excessive
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Fig. 7. (Color online) Number of atoms recaptured in MOT2 N2 vs. pushing beam detuning for different optical powers. The
vertical lines indicate the position of hyperfine resonance frequencies. Left: Cs data. The detuning is given with respect to the
6S1/2(F = 4) → 6P3/2(F

′ = 5) transition. The pushing beam power is 46 mW (squares), 10 mW (stars) or 2 mW (circles).

Right: 87Rb data. The frequency is measured relatively to the 5S1/2(F = 2) → 5P3/2(F
′
= 3) cycling transition. Pushing beam

power: 10 mW (squares), 15 mW (circles), and 21 mW (triangles).

final velocity, a strong perturbation of both MOTs, and a
large heating of the atoms.

In order to optimize the conditions for the atomic
beam, the influence of the detuning of the pushing light
was investigated in more details (see Fig. 7 left and right
resp. for Cs and 87Rb). For a frequency close to res-
onance (corresponding to the best conditions found in
Refs. [18,19]) the number of recaptured atoms into MOT2
is much smaller than the one we could achieve with a much
more red-detuned light and a higher power. In conclusion
we find that the best loading of MOT2 is at highest possi-
ble power of the pushing laser beam and, given this power,
at the value of red detuning optimizing the flux.

4.2 Atomic beam velocity

For a high recapture efficiency, a relatively slow and col-
limated atomic beam is required (see Sect. 3.5). After
the pushing and guiding process, the atoms reach MOT2
within a time delay ∆t. This time has been measured
in two different ways. First, one can record the MOT2
fluorescence after having suddenly removed the atoms in
MOT1 (the MOT1 laser beams are stopped by a me-
chanical shutter). In this case, one observes the delay af-
ter which the number of atoms in MOT2 starts to drop.
The second method consists in pulsing the pushing beam
through a permanently loaded MOT1. Both methods lead
to the same result ∆t ≈ 130 ms for the Cs experiment at
63 mW power. In the Rb experiment presented in Figure 8,
the measured time delay as a function of the pushing beam
power is obtained by using the second method. A similar
dependence on the pushing beam power is observed in the
cesium experiment. The two–level model is not sufficient
to describe accurately the atomic beam velocity, the pre-
dicted transfer time ∆t being by far too short (see Fig. 8,
lower curve). On the contrary, the theoretical model pre-
sented in Section 3.3, equation (13) describes well the ex-
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Fig. 8. (Color online) Experimental (points) and theoretical
results (solid lines) for the traveling time ∆t between MOT1
and MOT2 for different pushing beam powers. The beam is
red-detuned by 1 GHz from the cycling transition of 87Rb,

5S1/2(F = 2) → 5P3/2(F
′

= 3). The theoretical calculations
are done for both the two-level model approximation (blue
lower curve) and for the more detailed model described above
(red upper curve). In the calculations the radius of MOT1 trap-
ping region is 10 mm.

perimental results as demonstrated in Figure 8. From the
model, we also deduce the final longitudinal velocity of
the atomic beam v ≈ 5.5 m/s (resp. 12.6 m/s for Rb).
Note that this final velocity is not very different from the
mean velocity D/∆t, as the acceleration stage takes place
essentially in the MOT1 zone, where the atoms remain in
the F + 1 state thanks to the repumping MOT beams.

5 Conclusion

In our work we have studied a very efficient setup to trans-
fer cold atoms from a first MOT to a second one. Our
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setups have a similar geometry to the ones described in
references [18,19], but due to the higher laser power (tens
of mW) we could achieve a partial dipolar guide for the
atoms at a larger detuning (1 GHz typically). As a re-
sult, the mean longitudinal velocity of the atomic beam
is lower (4.3−12 m/s) than in these previous experiments
(15 m/s). Moreover, thanks to the lower sensibility of the
method to the frequency of the pushing laser, its frequency
does not need to be locked (see for instance the detun-
ing dependence in Fig. 7, right) and the setup is much
more robust to small misalignments of the pushing beam.
The atomic flux is limited only by the number of atoms
loaded into MOT1. We estimated the transfer efficiency
to MOT2 which is about 70% for the 133Cs experiment
and about 50% for the 87Rb experiment.

We used a two-level system model to describe the
processes during the atomic transfer. A good qualita-
tive agreement between theory and experiment was found.
The transfer efficiency is maximum for a large red detun-
ing, and this maximum efficiency increases with the laser
power. A more detailed discussion of the pushing, guiding
and recapture processes is presented for a better under-
standing of the atomic transfer between the two traps. Our
theoretical description, which takes into account the opti-
cal pumping, the pushing force and the guiding potential
nicely reproduces the experimentally observed traveling
time.

In conclusion, we experimentally described and theo-
retically modelled a method to transfer cold atoms be-
tween two traps. Two different setups lead qualitatively
to the same optimized parameters – a large laser power
(tens of mW), ≈ 1 GHz detuning, 300 µm waist. The im-
plementation of this technique in our setups brought in
both cases a much better stability and improved loading
efficiency, with respect to the use of a near resonant laser
beam.
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